
Managing and
Optimizing Your
Jobs on HPC
Tips to improve your workflow and usage of
computational resources

Provided by the
University of Arizona

HPC Center

Outline

1. Prerequisites and Overview

2. Job Management
a. Open OnDemand
b. Command Line

3. Job Optimization
a. Overview
b. Resource Requests
c. Hardware
d. Testing
e. Configuration

Prerequisites

familiarity with HPC system

- system access (both SSH and OnDemand)
- system layout (node types)
- batch jobs
- simple bash commands

computer literacy

- terminology like CPU, RAM, storage, etc

Prerequisites

Check out our Intro to HPC course
if you are a new user!

Overview

Managing your workflows on HPC is a
crucial component of the research
process

It’s quite common for users to have
dozens to hundreds or even thousands
of jobs running simultaneously

Alternatively, you may have a small
number of highly resource-intensive jobs

Overview

In this workshop, you will learn:

- available tools and best practices for keeping
track of your work

- tailoring resource requests for all job types

- system commands for tracking job performance

- general practices for configuring software to run
more efficiently

What is job management?

- help keep your work organized

- have a clearer understanding of how HPC works

- improve your research throughput

Why is job management important?

- keeping track of your active jobs and how many
resources they are utilizing

- keeping track of how previous jobs have performed

- awareness of and adherence to best practices

What is job optimization?
- requesting the optimal amount of compute resources

- not to much, not too little

- requires understanding your compute needs

- configuring and/or executing your software to use those
resources most effectively

Why is job optimization important?
- get your jobs to run faster, or larger

- utilize your CPU-time allocation more efficiently

- free up idle resources for other HPC users

Job Management

how to keep track of and
get information on your jobs
- both current and previous

Job Management

2 main modalities for HPC interface:

- you may use just one, or perhaps both, depending on your needs

graphical web browser command line interface

Job Management - Job Types

- Interactive Desktop - Interactive terminal sessions
- Graphical Apps (e.g. Ansys, Matlab) - Batch jobs
- Servers (e.g. Jupyter, R Studio)

graphical web browser command line interface

There are a few helpful options for job management in OOD, but they
are somewhat limited

See all active jobs See your interactive desktops

Available Tools

These are great tools for viewing and keeping track of
jobs that are currently running or pending

If we want to…

- view our previous jobs
- get more detailed information

…we have to hop on the command line

Limitations

Detailed Job Management

To get more details about your jobs, access the
system via SSH

This is a way of accessing the HPC from a
terminal window

- Mac & Linux: built-in command
- Windows: download SSH client like PuTTY

Let’s Try It! 🤝🎉
If you have never used SSH to access the system, try it
now.

Pause the video, and follow these steps:

1. Go to docs.hpc.arizona.edu, and find the page on
System Access

2. Follow the instructions for your system type

3. Make sure to access the login node! You should see
“wentletrap” or “junonia” before your username:

review our system layout
page if you don’t know
what that is!

http://docs.hpc.arizona.edu

Batch Job Recap

In case you are unfamiliar with batch jobs, let’s recap:

Batch jobs are a way to run code automatically, without user oversight or even
an active connection to HPC

Just like all other job types, batch jobs are allocated compute resources
through the task scheduler, called Slurm

Unlike other job types, batch jobs require a batch script that determines
everything the job will do in advance

The batch script is submitted using sbatch <myscript.slurm>, and will proceed
through the queue automatically

Batch Job Recap

Example Batch Script: Sections:

“shebang”

directives request compute resources

code tells the computer what to run

Detailed Job Management

Slurm is the task scheduler used by the UArizona HPC
(and many others)

There are two main commands that Slurm provides to get
more details about your jobs:

- squeue : current (running, pending) jobs

- sacct : finished (completed, canceled, failed) jobs

Both have many options to get details on your jobs

See slurm.schedmd.com/squeue.html and
slurm.schedmd.com/sacct.html for full list of options

http://slurm.schedmd.com/sacct.html
http://slurm.schedmd.com/sacct.html

squeue simple example

command:

squeue

output:

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

for which jobs?

every single currently running or pending job on the system

Let’s Try It! 🤝🎉
In your terminal session where you SSH’ed into the
HPC, type the command squeue and hit enter.

What do you see?

Is this output useful?

more squeue options

command: explanation:

squeue | head -n 15 print top 15 lines

squeue | tail -n 15 print bottom 15 lines

squeue | wc -l count the number of lines

squeue --user=$USER print only my jobs, or substitute for
another username to get their jobs

squeue simple example

command:

squeue -o " %10i %12P %10j %10u %8T %8M %6D %5C %10q %R" -u $USER

output:

JOBID PARTITION NAME USER STATE TIME NODES CPUS QOS NODELIST(REASON)

other options:

--state=R,PD specify running or pending jobs

--partition={option} specific name of partition to look at

squeue advanced example
specify jobs run
by current user

sacct

very similar syntax and options as squeue (though not exactly
the same)

for brevity, we’ll skip a detailed example

check the official slurm documentation, or numerous online
tutorials, for detailed instructions

One More Slurm Command:
scontrol

scontrol can be used to – you guessed it – control your jobs

First, get your job ID from squeue. Then, use a command:

scontrol <command> <job-id>

options for <command>

suspend - pauses a job that is currently running
resume - resumes a job paused with suspend
hold - prevent a queued job from starting
release - releases the held job
show job - provides detailed information on a job

More Job Management Tools

System Usage (use these to determine how busy the system currently is)

- nodes-busy - details for current cluster only (graphical)
- cluster-busy - overview of whole system (graphical)
- system-busy - overview of whole system (text only)

Your Jobs

- past-jobs -d <N> - list my jobs from the last N days on the current cluster
- seff <job-id> - efficiency report
- job-history <job-id> - detailed job info

Job Management - Recap

We just learned:

- how to see current and pending jobs in the Open
OnDemand browser

- how to SSH into the system

- how to use Slurm commands squeue , sacct, and
scontrol to view details of running, pending, and
completed jobs

- other system commands to help with job
management

What’s next…?

Job Optimization

how to get the most out of your
jobs, and out of your standard

CPU-time allocation

Job Optimization - Why?

With so many CPUs available on the clusters, why
should I bother optimizing my requests?

● get more out of your allocation
○ 150,000 CPU hours per month on Puma
○ 100,000 CPU hours per month on Ocelote
○ If your allocation is shared between many

users, or if you tend to run out of CPU hours by
the end of the month, optimization practices
can help improve your research throughput

● improve overall HPC efficiency
○ If your jobs are allocated resources that go

unused, those are unavailable to other users,
causing longer wait times

Job Optimization - Overview

The majority of job optimization can be broken down
into two categories:

1. Making appropriate resource requests

2. Calling the appropriate options when running
your software

We will spend most of our time on category 1, as it is
the almost generally applicable.

We will discuss runtime options for certain common
software, but we cannot cover every software used on
HPC, nor every use case for those softwares

Note: It is also possible to further optimize
your jobs by developing more efficient code,
but that falls more under the umbrella of a
research software engineer/developer than
a typical research software user. Optimizing
code under the hood can be incredibly
detail-oriented, case-specific, and time
consuming, so we will not cover it in this
tutorial.

Resource Requests - Overview

The goal of making an appropriate resource request
is to as closely as possible – match the allocated
compute resources with the minimum amount
needed by your job to successfully complete.

This means answering:

1. What are the available resources?

2. How many do you need to run your job?

Resource Requests - Overview

1. What are the available resources?

- This is an easy question to answer. We will cover
our hardware soon

2. How many do you need to run your job?

- This is the harder question. The main way to find
out is trial and error, or scaling tests

How Do I Submit a Resource Request?

Job Composer will ask you for
the necessary information

How Do I Submit a Resource
Request?

Fill out the batch directives section
with the relevant information

Memory-per-CPU will be set to
default value (standard node) if not
specified

See docs.hpc.arizona.edu for full list
of batch directives in the Running
Jobs section!

Command Line → Batch Directives

http://docs.hpc.arizona.edu

Hardware - Overview

UArizona’s HPC Center has three clusters

- Puma
- Ocelote
- El Gato

Each cluster is built from different
hardware, so resource requests in Slurm will
need to reflect this!

Lots of numbers incoming, no
need to memorize!

Hardware - Puma

Node Type Standard High Memory GPU
Number of Nodes 192 standard

108 buy-in
3 standard
2 buy-in

8 standard
7 buy-in

CPUs/Node 94 94 94
RAM/CPU 5 GB 32 GB 5 GB
CPU RAM/Node 470 GB 3008 GB 470 GB

GPUs/Node 4
RAM/GPU 32 GB (v100s)

20 GB (MIGs)
GPU RAM/Node 128 GB

Total GPUs 32 standard
28 buy-in

Hardware - Ocelote

Node Type Standard High Memory GPU
Number of
Nodes

400 1 46

CPUs/Node 28 48 28
RAM/CPU 6 GB 41 GB 8 GB
CPU RAM/Node 168 GB 1968 GB 224 GB

GPUs/Node 1
RAM/GPU 16 GB
GPU RAM/Node 16 GB
Total GPUs 46

Hardware - El Gato

Node Type Standard

Number of Nodes 130

CPUs/Node 16

RAM/CPU 4 GB

CPU RAM/Node 64 GB

What does this mean?

Common fields in resource requests include:

- number of CPUs
- number of nodes
- memory (RAM)
- GPUs

We need to know what our options are when
inputting these fields!

Note on CPUs and Memory

Each compute node has a certain number of
processors physically mounted on it

Each of those processors has a memory chip
physically connected to it

That means

Number of CPUs determines Memory*

Total Mem = Mem/CPU x N(CPU) Memory is not a continuous scale
or arbitrary number!!

*think RAM, not disk space!

Memory Takeaways

● Know the value for RAM per CPU for your machine!

● If using the total memory flag, make sure this equals NCPUs x
mem-per-CPU

● Only input allowed values for mem-per-CPU

Optimizing Resource Requests

Now we know what our options are for requesting
compute hardware

How do we know what the best configuration will be
for our jobs?

The answer…

- Testing
- Trial and Error
- Scaling Tests

Unfortunately there is no precise formula to tell you
exactly which hardware configuration will run you job
best…

Testing Overview

Determine
Job To Run

Make Initial
Resource
Guess

Run the
Job

Fails Examine Error
Message

Too Slow

Successful Run

Update
Resource
Request

Increase CPUs

Check Efficiency
Report

Testing Overview -
Additional Notes

Job failures can result from insufficient memory, or
numerous other factors. Check the logs!

If increasing the number of CPUs does not decrease the
time to completion, then your job is NOT CPU-Limited.
Reduce the number of requested CPUs!

You may need to decrease the number of CPUs requested
for a successful run to obtain an optimal value!

Efficiency Reporting Tools

Once you’ve run a test job, it’s important to view the efficiency report to
see how well it utilized the allocated resources

The best two system tools for efficiency are:

seff <job-id> - gives CPU and memory efficiency
job-history <job-id> - provides many job details

Additional online tool: XDMoD

metrics.hpc.arizona.edu

http://metrics.hpc.arizona.edu

Efficiency Reporting Tools

→ Caveat with “seff”

it reports the average CPU and memory utilization for
a job

These metrics can fluctuate up and down throughout
the course of a particular job.

It is always important to check the logs to see what
kind of errors are reported! This can indicate that a job
may have crashed due to an out-of-memory error even
if the seff report says it used less than 100%

Browser Tool: XDMoD

This is a browser-based job reporting
interface available at
metrics.hpc.arizona.edu

It can produce charts of job
statistics, but can be a bit tricky to
use.

But it is very powerful. Give it a try!

http://metrics.hpc.arizona.edu

Configuring Your Software for
Optimal Performance
With so many different softwares used on HPC, we can’t cover all of the
possible use cases.

Check with the developers of your software about their recommended
practices for parallelization, or multi-CPU modes.

Important!

→ Your software may not automatically detect the number of CPUs you
provided in your resource request!

→ You may have to specifically configure your software to use those CPUs!

Software Configuration Example

Let’s say there is a python script that you found on github to perform
your analysis. It has already been written using the multiprocessing
library. You want to run the script using 16 processors on Puma.

Try it yourself!

(1) what should the batch directives to request these processors look
like?

(2) what should the line of code to execute this program using all of
those processors look like?

Pause the video and write these in a text editor!

Software Configuration Example

(1) what should the batch directives to request these processors look
like?

#SBATCH --ntasks=16

(2) what should the line of code to execute this program using all of
those processors look like?

mpirun -np 16 python3 myscript.py

Note that we do not simply call “python3 myscript.py” – this will not run
it in parallel, it will only use a single processor!

Job Optimization Recap

Why do we optimize our jobs?

- use our allocations more effectively

- allow unused resources to be available to other users

How do we optimize our jobs?

- testing! make an initial guess, then revise based on runtime and
efficiency metrics

- configuration! make sure to call the right batch directives and
command line options when running your code

Thanks for watching!

If you have any questions or would like to follow up about
anything, you can contact the UArizona HPC Consult Team:

- ServiceNow (link)
- hpc-consult@list.arizona.edu
- Virtual Office Hours Wednesdays 2-4pm on GatherTown

Or go to docs.hpc.arizona.edu > Support > Consulting Services
for more information on services we offer

��

https://uarizona.service-now.com/sp?id=sc_cat_item&sys_id=2983102adbd23c109627d90d689619c6&sysparm_category=84d3d1acdbc8f4109627d90d6896191f
mailto:hpc-consult@list.arizona.edu
http://docs.hpc.arizona.edu

