
Intro to Parallel
Computing on HPC

Summer 2024
Ethan Jahn

UITS Research Technologies

access these slides: https://bit.ly/4eZEQwD

https://bit.ly/4eZEQwD

Outline

Section 1: Background and Theory
a. What is parallel computing? Why should we use it?
b. Terminology and Theory

Section 2: Practical Parallel Computing on UA HPC
a. Use cases, and user archetypes
b. Guidelines for parallel computing

Section 3: Examples
a. Array Jobs
b. GNU Parallel
c. Python - multiprocessing and mpi4py
d. Resources for R

Final Slide: References and Recommended Reading

Why Do We Care?

MacBook Pro 2021
Apple M1 Pro Chip
8-core CPU
16GB unified
memory
512GB SSD
$1999

Penguin Altus XE2242
4in1 chassis. Each compute node
has:
96 cores dual socket AMD EPYC 7642
512GB DDR4 3200MHz ECC memory
2TB SSD NVMe
$8000

Why Do We Care?

MacBook Pro 2021
Apple M1 Pro Chip
8-core CPU
16GB unified
memory
512GB SSD
$1999

Puma Cluster
269 compute nodes
25,824 cores dual socket AMD EPYC
7642
137,728GB DDR4 3200MHz ECC
memory
2PB SSD NVMe shared storage
538TB local storage
$2.7M

What is Parallel Computing?

Problem is broken into a discrete series of instructions

Instructions executed sequentially on a single processor (core)

Only one instruction can execute in each time step

Serial Computing

What is Parallel Computing?

Instructions from each section execute
simultaneously on different processors

Need to employ some overall coordination
method

Problem divided into discrete parts that can be solved concurrently

→ Further divided to series of instructions

Parallel Computing

What is Parallel Computing?

Serial Computing

Parallel Computing

What is Parallel Computing?
The majority of stand-alone computers today are parallel from a hardware perspective:

Multiple functional units

Multiple execution units/cores

Multiple hardware threads

AMD EPYC Rome
CPU

Nvidia V100
GPU

(L1 cache, L2 cache, branch, prefetch,
decode, floating-point, graphics
processing (GPU), integer, etc.)

Parallel computers can be built from
cheap(ish) commodity components

What is Parallel Computing?

Parallel Computers

Networks connect multiple stand-alone computers
(nodes) to make larger parallel computer
clusters .

Each compute node is a multiprocessor parallel
computer in itself

→ connected via a high-speed network

Special purpose nodes (also multiprocessor)
→ GPU nodes
→ high memory nodes

Puma Rack layout

Why Use Parallel Computing?

Parallelization
Accommodates

Complexity

Natural processes can be accurately
modeled with high resolution simulations
or models

- large number of components
- multiple types of components
- interactions
- temporal sequence

Example: Natural Language Processing
models have billions of parameters

Why Use Parallel Computing?

Parallelization Decreases Time to Result

Tasks with a greater number of independent calculations will benefit from dividing the load between more
processors

Why Use Parallel Computing?

Parallelization Provides Concurrency

A single processor can only perform one operation at a time.

Coordinating multiple processors allows for many operations to be performed in one clock cycle.

Example: The “shotgun” technique sequences a genome by breaking a long string of information into
shorter segments, then reassemble

Why Use Parallel Computing?

Parallelization Takes Advantage Of Non-Local
Resources

- Users don’t need to manage complex hardware
- Access powerful computing from anywhere

with an internet connection
- Distributed computing allows for another

meta-level parallelization

Example:
- Folding@Home is a distributed computing

project to simulate protein dynamics.
- Supercomputers at the three public Arizona

universities have contributed

Parallel Computing Terminology

Node –
an individual computer. A collection of them comprises
a supercomputer

CPU –
AKA socket or processor. A physical device mounted on
the motherboard. Puma nodes have two CPU’s

Core –
• Part of CPU capable of conducting independent work.
• Puma CPU’s have 48 cores for a total of 96 per node.
• 94 cores/node are usable
• However, in Slurm, “CPU” = “Core”

Parallel Computing Terminology

Process –
instance of a program, with access to its own
memory, state and file descriptors

Task –
a logically discrete section of computational work.
By default, Slurm allocates one CPU per task

Thread –
highest level of code executed by a processor.
Each process has at least one thread

Parallel Computing Terminology

Cache memory:
→ memory that is much faster but smaller and expensive.
→ L1 cache is on the core, L2 is next to each core and L3 is shared between 4 cores.

AMD Rome Core Complex

NUMA: Non-Uniform Memory Access.
→ Global address space shared by all cores.
→ Memory is local to each processor or remote, which is slower.

Parallel Computing Terminology

Types of HPC computation

Serial
• Computation runs on one core on one node
• Sometimes called High Throughput Computing

Shared Memory (AKA multi-threading)
• Single process with multiple threads
• Cores on single node work together
• Low level coordination
• Threads access shared memory space.

Distributed Memory (AKA multi-node)
• Cores on multiple nodes work independently
• High level coordination
• Coordination by passing messages over network.
• Supports large memory or many CPU workloads.

Parallel Computing Terminology

Massively Parallel –

workloads that use many hundreds or thousands of cores

Embarrassingly Parallel –

A task that contains perfectly independent computations,

e.g. matrix multiplication. Achieves ideal scaling.

MPI – Message Passing Interface

• Standard defining multi-node communication for distributed memory computing

• Implementations:

→ OpenMPI, Intel MPI, MPICH, MVAPICH

• OpenMPI and Intel MPI are encouraged on UA HPC clusters

Parallel Computing Terminology

OpenMP is an application programming interface (API)
for shared-memory parallel programming in C, C++ and
Fortran (single node)

MPI is a standard for parallelizing C, C++
and Fortran code to run on distributed
memory systems (multi-node)

Parallel Computing Theory

von Neumann Computer Architecture

John von Neumann
- Hungarian mathematician
- authored the general requirements

for an electronic computer in 1945

"stored-program computer"
- both program instructions and data

are kept in electronic memory.
- earlier computers programmed

through "hard wiring"

Since then, basically all computers have
followed this basic design:

Parallel Computing Theory

Flynn’s Classical Taxonomy (1966)

Scheme for classifying parallel computers.

- Distinguishes types of multi-processor
computer architectures

- Classifies based on multiplicity of Instruction
versus Data Streams

- Each of these can be Single or Multiple

MIMD: HPC

← Data →

←
 In

st
ru

ct
io

n
→

Parallel Computing Theory

Amdahl’s Law

theoretical maximum speedup is determined by the fraction of code
that can be run in parallel.

Parallel Computing Theory

Amdahl’s Law
- If a fraction X of a computation is run in

serial, the parallel speedup cannot be more
than 1/X

Serialized code

x

1
 y

1
 = P

1

x
2
 y

2
 = P

2

x
3
 y

3
 = P

3

x
4
 y

4
 = P

4

x
5
 y

5
 = P

5

 = P

x y

+

+

+

+

ᐧ

ᐧ

ᐧ

ᐧ

ᐧ

Exercise

- what fraction of the code for the
operation to the left is parallelizable?

- what is the expected fractional
speedup compared to serial?

Parallel Computing Theory

Scaling

Weak scaling (Gustafson):
The problem size per processor stays fixed as more processors are
added. The total problem size is proportional to the number of
processors used.

Goal is to run larger problem in same amount of time

Perfect scaling means problem P
N
 runs in same time as P

1

Strong scaling (Amdahl):
Total problem size stays fixed as more processors are added.

Goal is to run the same problem size faster

Perfect scaling means problem is solved in 1/P time (compared to serial)

Parallel Computing Theory

Scaling

Weak scaling (Gustafson):
The problem size per processor stays fixed as more processors are
added. The total problem size is proportional to the number of
processors used.

Goal is to run larger problem in same amount of time

Perfect scaling means problem P
N
 runs in same time as P

1

Strong scaling (Amdahl):
Total problem size stays fixed as more processors are added.

Goal is to run the same problem size faster

Perfect scaling means problem is solved in 1/P time (compared to serial)

Most research developments are made by utilizing
so-called “weak” scaling!

Parallel Computing Theory

Load Balance

Computation per
subset

s
u
b
s
e
t
s

Parallel Computing Theory

Load Imbalance

Caused by non-uniform data distributions
- large regions of very low density
- small regions of very high density

Occurs in astronomy, medical imaging,
rendering, etc.

If the space is divided evenly across threads
- some threads will do very little work

→ low density = few elements
- some threads will do a lot of work

→ high density = many elements

Parallel Computing Terminology

MPI Implementations

 Julia has anMPI language wrapper

 MATLAB has its own parallel extension library
implemented using MPI and PVM

 Python Implementations of MPI include pyMPI,
mpi4py, para, and MYMPI
Boost C++ Libraries acquired Boost:MPI which
include MPI Python Bindings.

 R Bindings of MPI include Rmpi and pbdMPI.

On HPC we support OpenMPI and Intel MPI. OpenMPI is a default module that is loaded with GCC
8.3
Intel MPI is provided when you unload OpenMPI and GCC, and then load the Intel compiler.
By default, modules on HPC are compiled with OpenMPI

Parallel Computing CPU vs GPU

GPUs were made for parallel computing
→ very large number of less powerful cores

• Large caches
• Sophisticated control
• Powerful logic units

• Small cache
• Simple control
• Many Energy efficient logic units

GPUCPU

Parallel Computing GPU
Nvidia has an elaborate and growing ecosystem based on CUDA which provides parallel support

Parallel Computing GPU

CPUs for sequential code where latency matters

GPUs can be >20X faster for parallel code

Most of these applications are installed as modules on HPC
● Tensorflow
● PyTorch
● Matlab
● NAMD
● LAMMPS
● Quantum ESPRESSO
● Gromacs
● Relion
● Nvidia RAPIDS
● Julia
● Folding@home
● Caffe2
● Schrodinger

Nvidia V100

Parallel Programming

The art of designing parallel algorithms, such as to calculate part of the
Fibonacci series ..

… is beyond the scope of this workshop.

A more extensive overview of parallel programming can be found at:

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

Practical Parallel Computing
on the UA HPC

Research Code End User

- Expert in domain science
- Some programming experience
- Interested in producing research insights,

writing publications
- Analysis consists of scripting and

prewritten software packages
- Needs functional understanding of

parallelization to speed up analysis and
produce results more quickly

Parallelization Use Cases

Research Software Engineer

- Majority of training in computer science,
some domain knowledge/experience
(varies)

- Interested in developing software for
researchers to use

- Primarily maintains git repository
- writes and develops parallel algorithms

I can’t te
ach you anything!

We can do this!

Realities of Developing Parallel Algorithms

- it can become very complex

- difficult to get right for non-trivial problems (weak
scaling/strong scaling)

therefore..

- parallel programs for research developed by specialists

- implemented by researchers

Typical Research
Workflow

1. Develop research question

2. Determine dataset

3. Find software that performs desired analysis

4. Download and learn software

5. Implement for research

a. simulations generate data by using theoretical, empirical principles

b. analysis software helps researchers extract useful information out of their experimental
datasets using statistics, modeling, theory, etc

What does this mean?

Researchers often do not develop
their own high performance
analysis software from scratch

- tend to use existing modules and
packages

There are aspects of parallelization
that are not always obvious or well-
communicated to researchers

-> many programs need to be told how
to run in parallel

-> it does not happy automagically!

- research software developers tackle
the difficulties of implementing
advanced computing algorithms

Check your software

- some programs are natively parallel
- many are not!

MPI is necessary to facilitate multi-node parallelization

- programming languages like python, R, etc do not
automatically have information about the number of
processors available, nor how to communicate between
nodes

- must implement proper packages to enable these
features

??????

• Simply dividing up a dataset and running independent serial analyses is
generally more efficient than complex parallelization schemes

• Use shared memory parallelism when available (avoids internode
communication overhead)

• Use distributed memory parallelism when one node does not provide
enough memory or cores

Adapting workloads, algorithms and code to
parallel resources

When writing or changing parallel code
• Do your homework

• identify code hotspots
• consider load balancing

• Depending on language, algorithm, and type of parallel resources, efficiently
parallelizing an algorithm can range between

• Adding a few lines of code
• Complete algorithm redesign

Other factors: not all numerical operations are equally fast
• integer < single precision FP < double precision FP
• addition < multiplication < division

Adapting workloads, algorithms and code to
parallel resources

Performance Analysis and Tuning

Installed as a module Installed in operating system

An integrated suite of tools for measurement
and analysis of program performance

Tools that can automatically detect many
memory management and threading bugs, and
profile your programs in detail.

./hello_world <command line args>

hello_world

1 process (task)
with multiple threads

shared memory space

SLURM DIRECTIVES:
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=3

Thread # control at program level:
• OpenMP: export OMP_NUM_THREADS=3
• Command line argument

Multithreaded program schematic

thread

thread

thread

OpenMP is probably the easiest (but not only)
method for creating multithreaded programs

mpirun –np 3 ./hello_world

hello_world
thread
thread
thread

• 3 MPI processes (tasks)
• Each potentially

multithreaded
• Independent memory

spaces
• May be on different

nodes

RELEVANT SLURM DIRECTIVES
#SBATCH --ntasks=3
#SBATCH --cpus-per-task=3
#SBATCH --nodes=#
#SBATCH --tasks-per-node=#

hello_world
thread
thread
thread

hello_world
thread
thread
thread

MPI API allows many internode communication methods

MPI schematic

Parallel Programming Examples!

Array jobs allow for meta-level parallelization.

Array jobs are useful if you have to run the same analysis on many different
data sets, and if the order of completion does not matter

DO NOT USE FOR LOOPS TO SUBMIT JOBS – USE ARRAY JOBS

Array Jobs

Parallel Computing on HPC – job arrays

Instead of this:
for i in $(seq 1 10); do sbatch script.slurm <submission options> ; done

Do this:

#!/bin/bash
#SBATCH --ntasks=1
#SBATCH --nodes=1
#SBATCH --time=00:01:00
#SBATCH --partition=standard
#SBATCH --account=YOUR_GROUP
#SBATCH --array 1-10

echo "./sample_command input_file_${SLURM_ARRAY_TASK_ID}.in"

https://ua-researchcomputing-hpc.github.io/Array-and-Parallel/Basic-Array-Job/

Using an array to submit multiple independent jobs

The above assumes that you have input files named
input_file_1.in, input_file_2.in, etc

Seriously, please do not do this!

https://ua-researchcomputing-hpc.github.io/Array-and-Parallel/Basic-Array-Job/

Parallel Computing on HPC - MPI

This example Slurm script runs the Hello World
executable on 10 cores on each of 3 nodes

#!/bin/bash
#SBATCH --job-name=Multi-Node-MPI-Job
#SBATCH --ntasks=30
#SBATCH --nodes=3
#SBATCH --ntasks-per-node=10
#SBATCH --time=00:01:00
#SBATCH --partition=standard
#SBATCH --account=YOUR_GROUP

module load gnu8 openmpi3

mpicc -o hello_world hello_world.c

mpirun -np $SLURM_NTASKS ./hello_world

https://ua-researchcomputing-hpc.github.io/MPI-
Examples/Multi-Node-MPI-Job/

note: this is just an example. there is not
really a good reason to use less than the
maximum number of cores per CPU

MPI is used for multi-node communication,
and it is not necessary when running
single-node, multithreaded jobs

MPI job submission - Hello World

https://ua-researchcomputing-hpc.github.io/MPI-Examples/Multi-Node-MPI-Job/
https://ua-researchcomputing-hpc.github.io/MPI-Examples/Multi-Node-MPI-Job/

Other tools!

Parallel Computing on HPC - GNU parallel

Access Compute Node
Use either batch job or interactive

$ elgato
$ interactive -a <your_group> -n 8
$ module load parallel
$ seq 1 100 | parallel 'DATE=$(date +"%T") && sleep 0.{} && echo \

 "Host: $(hostname) ; Date: $DATE; {}"'

Output
Host: junonia.hpc.arizona.edu ; Date: 15:47:06; 1
Host: junonia.hpc.arizona.edu ; Date: 15:47:06; 2
Host: junonia.hpc.arizona.edu ; Date: 15:47:06; 3
Host: junonia.hpc.arizona.edu ; Date: 15:47:06; 4
Host: junonia.hpc.arizona.edu ; Date: 15:47:06; 5
Host: junonia.hpc.arizona.edu ; Date: 15:47:06; 6
Host: junonia.hpc.arizona.edu ; Date: 15:47:07; 10
Host: junonia.hpc.arizona.edu ; Date: 15:47:06; 7
Host: junonia.hpc.arizona.edu ; Date: 15:47:07; 11

https://ua-researchcomputing-
hpc.github.io/Array-and-Parallel
/Basic-Parallel-Job/

Using GNU parallel to parallelize multiple tasks within one command

https://ua-researchcomputing-hpc.github.io/Array-and-Parallel/Basic-Parallel-Job/
https://ua-researchcomputing-hpc.github.io/Array-and-Parallel/Basic-Parallel-Job/
https://ua-researchcomputing-hpc.github.io/Array-and-Parallel/Basic-Parallel-Job/

Parallel Computing on HPC - GNU parallel

Parallel will create as many jobs as inputs:
parallel echo {#} ::: A.txt B.txt C.txt D.txt E.txt
1
2
3
4
5

Tons of examples online:
https://www.gnu.org/software/parallel/parallel_examples.html

Limit number of jobs:
parallel -j 2 echo {%} ::: A.txt B.txt C.txt D.txt E.txt
1
2
1
2
1

https://www.gnu.org/software/parallel/parallel_examples.html

Parallel Computing on HPC - Python

A not-completely-trivial example of a parallelized calculation in Python

We can approximate Pi with a Monte-Carlo Simulation to guess area of circle

source: https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial##ExamplesPI

Parallel Computing on HPC - Python

Serial Version:

code available: https://github.com/ethan-jahn/picalc_example

Parallel Computing on HPC - Python

Python “multiprocessing”
library implementation
→ enables single-node
 parallelization

code available: https://github.com/ethan-jahn/picalc_example

Parallel Computing on HPC - Python

Python “mpi4py” library
implementation
→ enables multi-node
 parallelization

code available: https://github.com/ethan-jahn/picalc_example

Parallel Computing on HPC - Python

Example batch script

Parallel Computing on HPC -
Python Multiprocessing Library

Estimate pi using a monte carlo simulation:
https://github.com/gelatinous-astronaut/picalc_example

On HPC:
Start an interactive session
elgato
interactive -a <your_group> -n 8

Set up environment
git clone https://github.com/gelatinous-astronaut/picalc_example.git
cd picalc_example
module load python
python3 -m venv --system-site-packages </path/to/env>
python3 -m pip install –upgrade pip
python3 -m pip install mpi4py multiprocessing

https://github.com/gelatinous-astronaut/picalc_example
https://github.com/gelatinous-astronaut/picalc_example.git

Parallel Computing on HPC -
Python Multiprocessing Library

Estimate pi using a monte carlo simulation:
https://github.com/gelatinous-astronaut/picalc_example

On HPC:

Run the code
python3 picalc_serial.py

python3 picalc_multiprocessing.py

mpirun -n 8 python3 picalc_mpi4py.py

https://github.com/gelatinous-astronaut/picalc_example

Parallel Computing on HPC - R

Quick Intro to Parallel Computing in R
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html

Using an Array with an R script
You can create an R script that generates 1000 randomized 1s and 0s,
store them as a dataframe, then save the dataframe to an output file.
Then run this R script as an array job.
https://ua-researchcomputing-hpc.github.io/R-Examples/R-Array-Jobs/

Check out the tidyverse – an opinionated collection of R packages designed for data science
install.packages(“tidyverse”)

For an excellent hands-on Parallel Analysis in R tutorial:
https://github.com/ljdursi/beyond-single-core-R
It covers these packages:
parallel, foreach, bigmemory, Rdsm, pbdR

https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html
https://ua-researchcomputing-hpc.github.io/R-Examples/R-Array-Jobs/
https://github.com/ljdursi/beyond-single-core-R

Parallel Computing References

Introduction to Parallel Computing Tutorial

Author: Blaise Barney, Livermore Computing (retired), Donald Frederick, LLNL
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial##Overview

Recommended reading

“Introduction to Parallel Computing”, Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar.

University of Oregon - Intel Parallel Computing Curriculum https://ipcc.cs.uoregon.edu/curriculum.html

An Introduction to Linux - https://cvw.cac.cornell.edu/Linux/

Linux Tutorial for Beginners: Introduction to Linux Operating System (link)

“Introduction to Linux” - Boston University (link)

“Parallel Processing in Python:A Practical Guide with Examples”, Selva Prabhakaran (link)

https://ipcc.cs.uoregon.edu/curriculum.html
https://cvw.cac.cornell.edu/Linux/
https://www.youtube.com/watch?v=V1y-mbWM3B8
https://www.bu.edu/tech/files/2018/05/2018-Summer-Tutorial-Intro-to-Linux.pdf
https://www.machinelearningplus.com/python/parallel-processing-python/

